This is always a tremendously difficult question to solve on any topic, I heartily recommend to you a book by J. E. Gordon called "The New Science of Strong Materials." It is very light reading and is a "popular science" book which requires no special training at all to appreciate, but will give you a dramatically better understanding of materials and structures. Its on the required reading list for almost all good 1st year engineering courses.
Amazon product ASIN 0140135979
View: https://www.amazon.co.uk/dp/0140135979/
Gordon reflects that it was "one of Gods little jokes" that the SPECIFIC stiffness of virtually all usable structural materials is nearly identical.
Surprisingly it is stiffness which oftern governs structural design, not strength. This number can only be improved upon by using VERY advanced non-homogenious
materials such as carbon or glass composities and cermets. (although technically woods are fibre composites...hence how they manage to "cheat" and Spruce beats Titanium!, which is at a disadvantage being a homogenious material - ie. it has the same composition throughout, whereas woods have very strong fibres held in place by a relatively weak matrix, matrix being the clever word for the "glue" that holds the strong fibres in an orientation such that their strength in tension is utilised, even the most advanced carbon fibre is essentially just "floppy yarn" until its held in place by the resin)
Specific Stiffness (Youngs Modulus per Unit Density, m^2 s-2 x 10^6)
Wrought Iron 26
Sitka Spruce 26
Steel 25
Aluminium 26
Titanium 25
Magnesium 26
Balsa 25
Pine 20
Wing flexure or fuselage twist would be two key metrics which essentially would produce an aircraft of exactly the same weight regardless of if they were made of iron or balsa wood !
(it is a little more complicated than that due to bucking in very thin sections, but the general principle is such)