SH-60B 1/35 Seahawk by Kitty Hawk

Ad: This forum contains affiliate links to products on Amazon and eBay. More information in Terms and rules

Maybe, this buste can stimulate and motivate to paint: :) :) :)

05594d670cd53b3f0fa70615a3409163.jpg


I panted it, two years ago
 
Beautiful work!

Hope everyone survived our USA Thanksgiving day! Our son and family were in from State College, PA so it was the first time the cousins saw one another in over 2 years. When kids are in their teens, two years is a whole lotta change, you know. It took a day for them to get comfortable with each other, but they all warmed up.

First thing I did today was to throw a coat of rattle can Tamiya Silver leaf on the T700 for the first metallic coat. I let it dry completely. It already looks better. I masked the firewall so I would have to repaint the Ocean Gray.

SH-60-B-T700-1st-Coat.jpg


The rest of a reasonably long work session was wrestling with the main rotor resin kit. Let me tell you, this is a real beast. I was spending as much time cobbling together repairs as I was building the assembly. There is a link with a universal joint on one end that seems to be part of the collective pitch mechanism. It's a two-part affair, with the cylindrical main part and another that will have a hydraulic line in it.

The cylinder casting was a total bear! There was an air bubble flaw in the narrow portion connecting it to the eye clevis on one end. This bubble caused a failure of every one. They gave six of these and I used all six. I ended up drilling and using guitar string to attach the parts back together.

SH-60-B-Main-Rotor-Fixed-Cylinder.jpg


To complicate things more, the eye angles were not in line with the cylinder main axis. I ended up first gluing them in the wrong angle since there was really no way to tell. To get the assembly right I broke the joints so I could rotate the eyes around the piano wire and get them together. It was a half-moon hole in the hub to accomodate the same shaped pin, but of course the pin was slightly oversized and needed careful filling so it would assemble without excess pressure that could break more piston rod joints. Ask me how I know this. After each was in the best position I used med CA with accelerator to fix them.

Through all this manhandling the little PE straps came off and some of the pins to which they attach broke also. I replaced one with 1/32" phos-bronze and will do the same with the other broken ones. I have extra PE parts and will replace them AFTER all the pieces are together. The resin is quite brittle. My 3D printed parts are tougher.

SH-60-B-Main-Rotor-actuators-in.jpg


Meanwhile, I wised up and drilled as many of the 0.012" holes as I could before getting these parts attached.

Then more troubles cames. The main shaft was still too tight a fit into the hub for my comfort. I didn't want to have to press too hard to get these together for fear of breaking more stuff in doing so. To rectify this I attempted to chuck the shaft into my DeWalt and spin it so I could sand it round. That worked until it didn't! A little too much side pressure and the smallest part of the shaft fractured. That part disappear into the ether. I found that the diamter was really close to 3/32" so I replaced it with a piece of tubing of that size. This worked pretty well and I dodged another bullet.

SH-60-B-Main-Rotor-Repaired-Main-Shaft.jpg


There is a hydraulic distribution component that sits atop the main shaft and this part has 8 fitting that needed to be installed AND drilled 0.012" The kit had two extras of each type (straight and elbow). I drilled them BEFORE separating them from the mold sprue. That part worked. What was less successful was getting them attached to their respective holes in the distributor. The holes were slight undersized and in pushing them in I broke a couple and lost more.

SH-60-B-Main-Rotor-Fittings.jpg


I opened these holes to a #58 drill to give more room. I still lost one elbow — and that was with my parts capture apron in place — so I started to scratch-build a little soldered affair that needs one of those small holes for a hydraulic line. It's a small piece of Albion tubing and a 1/32 piece of phos-bronze soldered together. I was in the midst of drilling the hole when it was time for dinner.

SH-60-B-Main-Rotor-New-Fitting.jpg


Just for scale, that large wooden log is a toothpick! That drill is really freaking small! The 0.012" is holding up much better than the 0.010" ones I was using (and breaking) before.
 
Thanks

I put the first color coat on the engine. Tamiya Dark Iron. It's a little dark so I might dust it with some orangy shade.
SH-60-B-T700-Hot-End-Paint-Start.jpg

Then I got down to business and finished the mechanical assembly of the rotor head proper (not the gear box which is another model in itself) and started piping.
The swash plate and locking lugs that connect it to the rotor shaft was reasonably sane except for breaking the ball end of one of the connecting rods. Again, I drilled it and used Guitar strings. Getting a bit tired of this. The first three rods when in in 10 minutes. That last one took probably a half hour. The lugs that connect the swash ring to the main shaft via that two-ended forging needed some filing to open up the slot so it would slip over the parts without forcing (which tends to break things).
SH-60-B-Main-Rotor-Mechanically-complete.jpg

Got the first pipe in and you'll notice in this image that I got all four PE rotor lock indicator bars in place.
SH-60-B-Main-Rotor-Rotor-Locks.jpg

Piping is going okay so far except for a slight distraction.
There were holes in the top rotor piece that i neglected to open. One of the pipes goes up through these holes and attaches to the underside of the angled fitting. I decided to re-pipe correctly and starting doing this late this afternnon and just got started on it.
And you'll now notice that some of the bars already popped off. I hate gluing PE with CA! I'll put some more in once all the handling is actually done.
SH-60-B-Main-Rotor-A-new-route.jpg
 
Piping work on main rotor hub continues. Spent about 1.5 hours today, with over one of those hours spent fixing the fittings on the hydraulic distributor. I used up all the resin ones I had including the double set that was included. The last two that I cut off the sprue were damaged since I cut too close to the part and actually removed some of it. I ended fup enlarging the connector end with some accelerated CA and made them work. Hopefully, when painted, they'll be okay. Getting the piping threaded under the piece and through the hole wasn't the big challenge. The challenge was geting the fitting into the holes and holding them there. I also replaced some of the straight connectors.

SH-60-B-Main-Rotor-Distributor-Fix.jpg


The next pipes ot go on were the large group that feeds the blade locks, and others that connect to the various components. One pipe comes out of the holes in the ring below the distributor. They were a large hole which I drilled deeper with the tiny drill.

This line curves under the blade angle cylinder — I suppose that's what it is since nothing actually tells you what all this complexity does.

There are four lines that go to the distribution fitting on the top of the claw (that's what I'm calling it... it's probably called the blade hinge. Three go to the claw: one into the back of each lock cylinder, one f the claw, and the last into the back of the clevis. That hole I didn't pre-drill and had to add it now. It was delicate to say the least!

SH-60-B-Main-Rotor-1-Arm-Piped.jpg


All of those lines will have to painted black once the hub is painted. Next session I'll get as much done as I can.
 
I decided to find out what these parts really were and found the Pilot's manual for the SH-60B Seahawk. A good, complicated read that I should have review BEFORE doing all the engine piping. There are good images of engine details and components. Here's the main rotor. The cylinders on the sides of the arms are shock absorbers. And the plate on top with the weights hanging on the ends (which are separate snap on pieces on the rotor kit) are tungsten weights that act as a vibration damping system.

Screen-Shot-2021-12-01-at-6-56-51-PM.png
 
I Can't believe that this is the 3rd time I've written this post. I keep doing something that changes the Safari tabs and I lose the entire thing. I'm going to copy the darn thing so I can retrieve it when I screw up.

I got the rotor piping done today. I did the rest of the arms in the same time as it took to do one yesterday. If I had to build another I'd even be faster. Up the learning curve I go...

I did some more research on the prototype learning about the Biflar Vibration Dampening System on the top of the rotor mask. It uses free floating tungsten weights that oscilate opposing the natural vibration generated by the rotors. The system is dynamically balanced, but the rotors still generate a lot of vibration. With the system vibration is reduced 55% in the cabin making for a quieter and smoother ride.

The engines are fully computer controlled by Digital Engine Control Unit (DECU). This takes all the fuel and engine settings away from the pilot. All they do is put the throttle control on idle, hit start, when it spools up, move it to fly and that's it. Everything else is controlled by the DECU based on the flight inputs and how much power is needed.

The tubular duct running across the top of the engine is the output from the Grit Removal System. A centrifugal impeller drivers particulates out of the air stream and then a separate blower pushes the dirty air out to the exhaust trunk (a la the Dyson vacuum).

I found more good images for detailing and coloration. Notice how clean it is. The Biflar weights are very obvious in this image.

More_Rotor_Detail_esp_Paint.jpg


And this is even cleaner. I think this is a new aircraft. Most is body color, but there's enough bare metal to add interest.

SH-60B_Rotor_Head_Detail.jpg


The rotor system even has a power fold actuator (another hydraulic line).

I broke another blade lock sensor and had to scratch-build the complete part this time. No big deal. I was pressing too hard when trying to scrape a bit of excess CA off some small detail. It's a complicated thing, ain't it?

SH-60B_Main_Rotor_Piping_Done_2.jpg


I primed it with Tamiya white primer.

SH-60-B-Main-Rotor-Primed.jpg


I will be adding more details using bare metal foil during the finish painting time.

While this was drying I started working on the transmission and angle drives. The hydaulic pumps come off the angle drives, not the engines. There were four sub-assemblies requiring tiny resin parts and Gel CA. Not fun! Too small of gluing area and critical angles.

SH-60B_Transmission_Parts.jpg


These parts going onto a bracket that attaches to the trans body. This stuff may not be visible unless I open some more panels.

The Seahawk also has an APU that's nestled between the exhaust trunks that provides starting air and power when main engines are off. The kit does not have this, nor are there any AM parts. I suppose I could draw it and 3D print it, but then I'd have open another panel. I don't think I'm doing this.
 
I Can't believe that this is the 3rd time I've written this post. I keep doing something that changes the Safari tabs and I lose the entire thing. I'm going to copy the darn thing so I can retrieve it when I screw up.

I got the rotor piping done today. I did the rest of the arms in the same time as it took to do one yesterday. If I had to build another I'd even be faster. Up the learning curve I go...

I did some more research on the prototype learning about the Biflar Vibration Dampening System on the top of the rotor mask. It uses free floating tungsten weights that oscilate opposing the natural vibration generated by the rotors. The system is dynamically balanced, but the rotors still generate a lot of vibration. With the system vibration is reduced 55% in the cabin making for a quieter and smoother ride.

The engines are fully computer controlled by Digital Engine Control Unit (DECU). This takes all the fuel and engine settings away from the pilot. All they do is put the throttle control on idle, hit start, when it spools up, move it to fly and that's it. Everything else is controlled by the DECU based on the flight inputs and how much power is needed.

The tubular duct running across the top of the engine is the output from the Grit Removal System. A centrifugal impeller drivers particulates out of the air stream and then a separate blower pushes the dirty air out to the exhaust trunk (a la the Dyson vacuum).

I found more good images for detailing and coloration. Notice how clean it is. The Biflar weights are very obvious in this image.

View attachment 650220

And this is even cleaner. I think this is a new aircraft. Most is body color, but there's enough bare metal to add interest.

View attachment 650221

The rotor system even has a power fold actuator (another hydraulic line).

I broke another blade lock sensor and had to scratch-build the complete part this time. No big deal. I was pressing too hard when trying to scrape a bit of excess CA off some small detail. It's a complicated thing, ain't it?

View attachment 650222

I primed it with Tamiya white primer.

View attachment 650223

I will be adding more details using bare metal foil during the finish painting time.

While this was drying I started working on the transmission and angle drives. The hydaulic pumps come off the angle drives, not the engines. There were four sub-assemblies requiring tiny resin parts and Gel CA. Not fun! Too small of gluing area and critical angles.

View attachment 650224

These parts going onto a bracket that attaches to the trans body. This stuff may not be visible unless I open some more panels.

The Seahawk also has an APU that's nestled between the exhaust trunks that provides starting air and power when main engines are off. The kit does not have this, nor are there any AM parts. I suppose I could draw it and 3D print it, but then I'd have open another panel. I don't think I'm doing this.
A medal for perserverance. I would've given up long ago. Heck, I wouldn't have even started.
 
Thanks guys!

The transmission and final drives are built and ready for paint. I kept breaking off the little actuator ball ends and ended up pinning various parts in place so I wasn't just relying on CA.

The lever bracket had a square opening that you needed to open. I missed it at first and was having a heck of time getting the lever set to fit in. I then saw the little "Cut" writing on the rectangle, removed it and the lever went in without difficulty.

SH-60-B-Main-Rotor-Trans-1.jpg


Lots of other stuff went on this final drive including an oil filler which is also pinned.

SH-60-B-Main-Rotor-Trans-2.jpg


The angle drives that come from each engine have a right and a left. I didn't pay attention to this! I didn't read the instructions carefully enough to realize they had two different part numbers. So of course I put them on backwards (Darn Murphy!!). I was able to pop them off and put them on correctly.

I took these pictures with the trans and engines in relatively correct positions. I think they're upside down. The tail rotor take off is there too.

SH-60-B-Main-Rotor-Trans-Comp-1.jpg


SH-60-B-Main-Rotor-Trans-Comp-2.jpg


Painting will commence again tomorrow.
 
Trans is finished and I painted both it and the T700. Still have to paint the rotor head (tomorrow). Armed with my engine pictures I painted the different engine sections various shades of metal, plus some transparent green metallic shade for the grit separator scroll. I then picked out the various piping/wiring/sensors and appliances in flat aluminun, flat black and Molotow Chrome (decanted and using brush).

SH-60-B-Drive-Painting-2.jpg


The darker shade is flat aluminum mixed with flat black. The lighter shade for the accessory case is flat white and flat aluminum. The compressor section was the initial silver leaf spray brush coated with Tamiya flat clear.

SH-60-B-Drive-Painting-3.jpg


Lastly, I also sprayed the trans with the silver leaf and then went over most of it with the darker black/aluminum mix. I left some parts shiny and painted the oil filler cap yellow.

SH-60-B-Drive-Painting-1.jpg


Just for reference. here's the engine pic that I used for color choice.

Screen-Shot-2021-11-16-at-6-26-49-PM.png
 

Users who are viewing this thread

Back