mikewint
Captain
Don't start the fires just yet...Me not done yet.
Now a bit of science:
Inferior mirages are the most commonly noticed type of mirage; therefore, in the minds of most people, it is the only type of mirage. An inferior mirage occurs when there is a layer of warm air in contact with the ground, with layers of much cooler air just above. This condition exists nearly every sunny day. As the sun's radiation is absorbed by the ground, the air in contact with the ground heats, while air a short distance above the ground remains cooler, so a large temperature difference can exist between these two layers. Because this temperature difference is most pronounced when the sun is as high in the sky as possible, this condition is most likely to occur in the early afternoon in late spring and into summer. The type of surface exposed to sunlight is very important too, because dark, flat surfaces, such as pavement, rock, and sand are most efficient at heating air this way. Surfaces with much vegetation, such as grass, are far less efficient in doing this. Because of its high specific heat and great optical depth, water generally is very poor at producing conditions conducive to an inferior mirage.
One of the most common objects reflected in this way is blue sky, which our brains interpret as light reflecting off a body of water. The reflected image appears below the object, which is why we call this an inferior mirage. The layer of warm air near the surface acts much like an ordinary mirror. As a mirror reverses direction left to right, an inferior mirage reverses direction from top to bottom (you see the same thing with a mirror if you tilt your head 90 degrees and look at reflections in the mirror.) The reversal happens because light from the top of a distant object will reflect closer to the observer than light from the bottom of the object. Therefore, inferior mirages usually appear inverted. Early in the morning or late in the afternoon, solar heating of the ground is not nearly as great, so inferior mirages are less likely to happen then. The same is true during autumn and winter when the sun is much lower in the sky.
The warm surface air that causes inferior mirages tends to expand. As air expands, it becomes less dense, producing buoyancy. Buoyant force causes the warm air to rise, and the air must be replaced somehow. This unstable condition leads to upward and downward motion of air (turbulence). Light passing through turbulent air is blurred. The constantly changing turbulence causes the images to shimmer. It is unusual for an inferior mirage to be steady.
Superior Mirages
As previously mentioned, the reaction of bodies of water with sunlight is very different from that of land. Being largely transparent, light penetrates deeply into water, so that the sun's light is absorbed throughout a thick layer from the surface to some depth rather than just on the surface, as with land. Additionally, water has a high specific heat, which means that its temperature increases very slowly as heat is added. Consequently, water exposed to sunlight does not change temperature appreciably throughout the day, so there is no heating of air in contact with the water. If anything, during summer afternoons, when land is rapidly heating, bodies of water frequently are cooler than air temperature. The cooler water chills the air in direct contact with it, so the air lying just above water often is cooler than air higher up. Since air temperature normally decreases with height, this temperature reversal from the norm is called a temperature inversion. Temperature inversions are common over bodies of water during late spring and into summer. Since this temperature structure is the reverse of what causes inferior mirages, inferior mirages are far less commonly noticed over water. This happens particularly during the summer, when inferior mirages are common over land.
With increasing distance from the object, the earth's curvature causes the surface of the water to fall away from the beam of light. This is the point of the Bedford level experiment—the curvature of the earth ought to intervene to prevent the mast of the boat being visible from much more than three miles, let alone six miles. However, for the light from the distant object not to be visible, it would have to travel in a straight line. But with a temperature inversion, straight-line motion would carry the light from a cooler layer of air into a warmer layer of air at nearly a grazing angle. The light cannot do this, so it continually is internally reflected (just like a fiber optic cable), causing the light to bend around the edge of the earth. Therefore, with a temperature inversion, one can see objects that lie well beyond the edge of the earth's curvature when viewing close to the surface of water.
Since this image is visible above where the object is, it is called a superior mirage. Because cooler air has no physical reason to rise, a temperature inversion is a stable situation, with little convection as with the condition that produces an inferior mirage. Therefore, superior mirages can be very steady, much steadier than inferior mirages. Furthermore, since the refraction acts almost continually rather than at one point, superior mirages normally are erect rather than inverted.
What was captured in the above post is a SUPERIOR MIRAGE of the Chicago skyline caused by a temperature inversion over the lake.
Now a bit of science:
Inferior mirages are the most commonly noticed type of mirage; therefore, in the minds of most people, it is the only type of mirage. An inferior mirage occurs when there is a layer of warm air in contact with the ground, with layers of much cooler air just above. This condition exists nearly every sunny day. As the sun's radiation is absorbed by the ground, the air in contact with the ground heats, while air a short distance above the ground remains cooler, so a large temperature difference can exist between these two layers. Because this temperature difference is most pronounced when the sun is as high in the sky as possible, this condition is most likely to occur in the early afternoon in late spring and into summer. The type of surface exposed to sunlight is very important too, because dark, flat surfaces, such as pavement, rock, and sand are most efficient at heating air this way. Surfaces with much vegetation, such as grass, are far less efficient in doing this. Because of its high specific heat and great optical depth, water generally is very poor at producing conditions conducive to an inferior mirage.
One of the most common objects reflected in this way is blue sky, which our brains interpret as light reflecting off a body of water. The reflected image appears below the object, which is why we call this an inferior mirage. The layer of warm air near the surface acts much like an ordinary mirror. As a mirror reverses direction left to right, an inferior mirage reverses direction from top to bottom (you see the same thing with a mirror if you tilt your head 90 degrees and look at reflections in the mirror.) The reversal happens because light from the top of a distant object will reflect closer to the observer than light from the bottom of the object. Therefore, inferior mirages usually appear inverted. Early in the morning or late in the afternoon, solar heating of the ground is not nearly as great, so inferior mirages are less likely to happen then. The same is true during autumn and winter when the sun is much lower in the sky.
The warm surface air that causes inferior mirages tends to expand. As air expands, it becomes less dense, producing buoyancy. Buoyant force causes the warm air to rise, and the air must be replaced somehow. This unstable condition leads to upward and downward motion of air (turbulence). Light passing through turbulent air is blurred. The constantly changing turbulence causes the images to shimmer. It is unusual for an inferior mirage to be steady.
Superior Mirages
As previously mentioned, the reaction of bodies of water with sunlight is very different from that of land. Being largely transparent, light penetrates deeply into water, so that the sun's light is absorbed throughout a thick layer from the surface to some depth rather than just on the surface, as with land. Additionally, water has a high specific heat, which means that its temperature increases very slowly as heat is added. Consequently, water exposed to sunlight does not change temperature appreciably throughout the day, so there is no heating of air in contact with the water. If anything, during summer afternoons, when land is rapidly heating, bodies of water frequently are cooler than air temperature. The cooler water chills the air in direct contact with it, so the air lying just above water often is cooler than air higher up. Since air temperature normally decreases with height, this temperature reversal from the norm is called a temperature inversion. Temperature inversions are common over bodies of water during late spring and into summer. Since this temperature structure is the reverse of what causes inferior mirages, inferior mirages are far less commonly noticed over water. This happens particularly during the summer, when inferior mirages are common over land.
With increasing distance from the object, the earth's curvature causes the surface of the water to fall away from the beam of light. This is the point of the Bedford level experiment—the curvature of the earth ought to intervene to prevent the mast of the boat being visible from much more than three miles, let alone six miles. However, for the light from the distant object not to be visible, it would have to travel in a straight line. But with a temperature inversion, straight-line motion would carry the light from a cooler layer of air into a warmer layer of air at nearly a grazing angle. The light cannot do this, so it continually is internally reflected (just like a fiber optic cable), causing the light to bend around the edge of the earth. Therefore, with a temperature inversion, one can see objects that lie well beyond the edge of the earth's curvature when viewing close to the surface of water.
Since this image is visible above where the object is, it is called a superior mirage. Because cooler air has no physical reason to rise, a temperature inversion is a stable situation, with little convection as with the condition that produces an inferior mirage. Therefore, superior mirages can be very steady, much steadier than inferior mirages. Furthermore, since the refraction acts almost continually rather than at one point, superior mirages normally are erect rather than inverted.
What was captured in the above post is a SUPERIOR MIRAGE of the Chicago skyline caused by a temperature inversion over the lake.