Ad: This forum contains affiliate links to products on Amazon and eBay. More information in Terms and rules
Agree!syscom3 said:The F18 is a fair enough aircraft, but compromises had to be made for it to perform bombing and fighter missions.
Remember the airframe is still a mid to late 70's design and its coming on 30 years of design age.
Twitch said:"F-18 in combat-" I guess the main thing is how can we evaluate a combat aircraft's effectiveness from its endless training excercises that has little or no real world combat immersion?
(summarised from wikipedia)The F/A-18 first saw combat action in 1986, when Hornets from the USS Coral Sea (CV-43) flew SEAD missions against Libyan air defenses during the attack on Benghazi.
The F/A-18 demonstrated its versatility and reliability during Operation Desert Storm, shooting down enemy fighters and subsequently bombing enemy targets with the same aircraft on the same mission, and breaking all records for tactical aircraft in availability, reliability, and maintainability. The aircraft's survivability was proven by Hornets taking direct hits from surface-to-air missiles, recovering successfully, being repaired quickly, and flying again the next day. Two F/A-18's were lost in the Gulf War, one for reasons unknown and the second alleged to have been shot down by an Iraqi MiG-25PD. US Navy pilots Lt. Robert Dwayer (Air Wing Pilot VFA-87??) and LCDR M. Scott Speicher (VFA-81) were killed. [1] in the first hours of the air campaign. F/A-18's were credited with two kills, both of MiG-21's, during that conflict.
The multi-mission F/A-18E/F "Super Hornet" strike fighter is an upgrade of the combat-proven night strike F/A-18C/D. The Super Hornet will provide the battle group commander with a platform that has range, endurance, and ordnance carriage capabilities comparable to the A-6 which have been retired. The F/A-18E/F aircraft are 4.2 feet longer than earlier Hornets, have a 25% larger wing area, and carry 33% more internal fuel which will effectively increase mission range by 41% and endurance by 50%. The Super Hornet also incorporates two additional weapon stations. This allows for increased payload flexibility by mixing and matching air-to-air and/or air-to-ground ordnance. The aircraft can also carry the complete complement of "smart" weapons, including the newest joint weapons such as JDAM and JSOW.
The Super Hornet can carry approximately 17,750 pounds (8,032 kg) of external load on eleven stations. It has an all-weather air-to-air radar and a control system for accurate delivery of conventional or guided weapons. There are two wing tip stations, four inboard wing stations for fuel tanks or air-to-ground weapons, two nacelle fuselage stations for Sparrows or sensor pods, and one centerline station for fuel or air-to-ground weapons. An internal 20 mm M61A1 Vulcan cannon is mounted in the nose.
Carrier recovery payload is increased to 9,000 pounds, and its engine thrust from 36,000 pounds to 44,000 pounds utilizing two General Electric F414 turbo-fan engines. Although the more recent F/A-18C/D aircraft have incorporated a modicum of low observables technology, the F/A-18E/F was designed from the outset to optimize this and other survivability enhancements.
The Hughes Advanced Targeting Forward-Looking Infra-Red (ATFLIR), the baseline infrared system for the F/A-18 E/F, will also be deployed on earlier model F/A-18s. The Hughes pod features both navigation and infrared targeting systems, incorporating third generation mid-wave infrared (MWIR) staring focal plane technology.
Although 41% interdiction mission range increase may be the most notable F/A-18E/F improvement, the ability to recover aboard with optimal reserve fuel and a load of precision strike weapons, is of equal importance to the battle group commander. The growth potential of the F/A-18E/F is more important to allow flexible employment strategies in future years. If an electronically scanned array antenna or another installation-sensitive sensor or weapon system becomes available, the F/A-18E/F has the space, power and cooling to accommodate it. Although the more recent F/A-18C/D aircraft have incorporated a modicum of low observables technology, the F/A-18E/F was designed from the outset to optimize this and other survivability enhancements. The all-F/A-18C/D/E/F air wing brings an increase in capability to the carrier battle group while ensuring the potential to take advantage of technological advances for years to come.
Features of the F/A-18 E/F Super Hornet:
90% Common F/A-18C/D Avionics: Avionics and software have a 90 percent commonality with current F/A-18C/Ds. However, the F/A-18E/F cockpit features a touch-sensitive, upfront control display; a larger, liquid crystal multipurpose color display; and a new engine fuel display.
34 in. Fuselage Extension: The fuselage is slightly longer - the result of a 34-inch extension.
Two Additional Multi-Mission Weapons Stations: Super Hornet has two additional weapons stations, bringing the total to 11. For aircraft carrier operations, about three times more payload can be brought back to the ship.
25% Larger Wing: A full 25 percent bigger than its predecessor, Super Hornet has nearly half as many parts.
35% Higher Thrust Engines: Increased engine power comes from the F414-GE-400, an advanced derivative of the Hornet's current F404 engine family. The F414 produces 35 percent more thrust and improves overall mission performance. Enlarged air inlets provide increased airflow to the engines.
33% Additional Internal Fuel: Structural changes to the airframe increase internal fuel capacity by 3,600 pounds, or about 33 percent. This extends the Hornet's mission radius by up to 40 percent.
Roll-out of the first Super Hornet occurred in September 1995, and it flew for the first time in November 1995, ahead of schedule and nearly 1,000 pounds under specified weight. In January 1997, the Super Hornet successfully conducted its initial sea trials on board the Navy's newest aircraft carrier, USS JOHN C. STENNIS (CVN 74).
The Navy is planning to procure a minimum of 548 Super Hornets, and possibly as many as 1,000. These numbers could vary depending on the progress of the Joint Strike Fighter Program. As part of the Quadrennial Defence Review (QDR) production of the Super Hornet was cut from 1000 to 548 units. Production of the aircraft commenced in FY 1997, and it is expected to attain initial operational capability (IOC) in FY 2001. Twelve aircraft were funded in FY 1997; procurement numbers increase to 20 in FY 1998, 30 in FY 1999, and reach a final maximum rate of 48 per year in FY 2001.
Ummm, more cluster munitions were dropped in Iraq than any other weapon....R988 said:Most bombs these days are guided