parsifal
Colonel
Having a swept wing or not having a swept wing is a function of the main operating speeds. This has the effect of "delaying the drag rise caused by fluid compressibility near the speed of sound as swept wing fighters such as the F-86 were among the first to be able to exceed the speed of sound in a slight dive, and later in level flight".
Swept wing technology is not much help to aircraft travelling at singinificantly less than mach 1. And there are disadvantages. This from wiki
"When a swept wing travels at high speed, the airflow has little time to react and simply flows over the wing almost straight from front to back. At lower speeds the air does have time to react, and is pushed spanwise by the angled leading edge, towards the wing tip. At the wing root, by the fuselage, this has little noticeable effect, but as one moves towards the wingtip the airflow is pushed spanwise not only by the leading edge, but the spanwise moving air beside it. At the tip the airflow is moving along the wing instead of over it, a problem known as spanwise flow.
The lift from a wing is generated by the airflow over it from front to rear. With increasing span-wise flow the boundary layers on the surface of the wing have longer to travel, and so are thicker and more susceptible to transition to turbulence or flow separation, also the effective aspect ratio of the wing is less and so air "leaks" around the wing tips reducing their effectiveness. The spanwise flow on swept wings produces airflow that moves the stagnation point on the leading edge of any individual wing segment further beneath the leading edge, increasing effective angle of attack of wing segments relative to its neighbouring forward segment. The result is that wing segments farther towards the rear operate at increasingly higher angles of attack promoting early stall of those segments. This promotes tip stall on back swept wings, as the tips are most rearward, while delaying tip stall for forward swept wings, where the tips are forward. With both forward and back swept wings, the rear of the wing will stall first. This creates a nose-up pressure on the aircraft. If this is not corrected by the pilot it causes the plane to pitch up, leading to more of the wing stalling, leading to more pitch up, and so on. This problem came to be known as the Sabre dance in reference to the number of North American F-100 Super Sabres that crashed on landing as a result.
The solution to this problem took on many forms. One was the addition of a fin known as a wing fence on the upper surface of the wing to redirect the flow to the rear (see the MiG-15 as an example.) Another closely related design was addition of a dogtooth notch to the leading edge (Avro Arrow). Other designs took a more radical approach, including the Republic XF-91 Thunderceptor's wing that grew wider towards the tip to provide more lift at the tip. The Handley Page Victor had a planform based on a crescent compound sweep or scimitar wing that had substantial sweep-back near the wing root where the wing was thickest, and progressively reducing sweep along the span as the wing thickness reduced towards the tip.
Modern solutions to the problem no longer require "custom" designs such as these. The addition of leading edge slats and large compound flaps to the wings has largely resolved the issue. On fighter designs, the addition of leading edge extensions, included for high maneuverability, also serve to add lift during landing and reduce the problem.
The swept wing also has several more problems. One is that for any given length of wing, the actual span from tip-to-tip is shorter than the same wing that is not swept. Low speed drag is strongly correlated with the aspect ratio, the span compared to chord, so a swept wing always has more drag at lower speeds. Another concern is the torque applied by the wing to the fuselage, as much of the wing's lift lies behind the point where the wing root connects to the plane. Finally, while it is fairly easy to run the main spars of the wing right through the fuselage in a straight wing design to use a single continuous piece of metal, this is not possible on the swept wing because the spars will meet at an angle".
Now, having read all that, I dont see the Me 262 as having solutions to the problems generated by the swept wing . I dont profess to understand any of this, but either the solution is there, or it isnt, and i dont see a solution in the Me 262 package. so its swept wing technology, like a lot of things about the 262, whilst "sexy" and "nice to have" isnt a real game changer or advantage that i can see. ill stand corrected if one of the boffins in this place can explain differently to me why the 262's swept wing was an advantage
Swept wing technology is not much help to aircraft travelling at singinificantly less than mach 1. And there are disadvantages. This from wiki
"When a swept wing travels at high speed, the airflow has little time to react and simply flows over the wing almost straight from front to back. At lower speeds the air does have time to react, and is pushed spanwise by the angled leading edge, towards the wing tip. At the wing root, by the fuselage, this has little noticeable effect, but as one moves towards the wingtip the airflow is pushed spanwise not only by the leading edge, but the spanwise moving air beside it. At the tip the airflow is moving along the wing instead of over it, a problem known as spanwise flow.
The lift from a wing is generated by the airflow over it from front to rear. With increasing span-wise flow the boundary layers on the surface of the wing have longer to travel, and so are thicker and more susceptible to transition to turbulence or flow separation, also the effective aspect ratio of the wing is less and so air "leaks" around the wing tips reducing their effectiveness. The spanwise flow on swept wings produces airflow that moves the stagnation point on the leading edge of any individual wing segment further beneath the leading edge, increasing effective angle of attack of wing segments relative to its neighbouring forward segment. The result is that wing segments farther towards the rear operate at increasingly higher angles of attack promoting early stall of those segments. This promotes tip stall on back swept wings, as the tips are most rearward, while delaying tip stall for forward swept wings, where the tips are forward. With both forward and back swept wings, the rear of the wing will stall first. This creates a nose-up pressure on the aircraft. If this is not corrected by the pilot it causes the plane to pitch up, leading to more of the wing stalling, leading to more pitch up, and so on. This problem came to be known as the Sabre dance in reference to the number of North American F-100 Super Sabres that crashed on landing as a result.
The solution to this problem took on many forms. One was the addition of a fin known as a wing fence on the upper surface of the wing to redirect the flow to the rear (see the MiG-15 as an example.) Another closely related design was addition of a dogtooth notch to the leading edge (Avro Arrow). Other designs took a more radical approach, including the Republic XF-91 Thunderceptor's wing that grew wider towards the tip to provide more lift at the tip. The Handley Page Victor had a planform based on a crescent compound sweep or scimitar wing that had substantial sweep-back near the wing root where the wing was thickest, and progressively reducing sweep along the span as the wing thickness reduced towards the tip.
Modern solutions to the problem no longer require "custom" designs such as these. The addition of leading edge slats and large compound flaps to the wings has largely resolved the issue. On fighter designs, the addition of leading edge extensions, included for high maneuverability, also serve to add lift during landing and reduce the problem.
The swept wing also has several more problems. One is that for any given length of wing, the actual span from tip-to-tip is shorter than the same wing that is not swept. Low speed drag is strongly correlated with the aspect ratio, the span compared to chord, so a swept wing always has more drag at lower speeds. Another concern is the torque applied by the wing to the fuselage, as much of the wing's lift lies behind the point where the wing root connects to the plane. Finally, while it is fairly easy to run the main spars of the wing right through the fuselage in a straight wing design to use a single continuous piece of metal, this is not possible on the swept wing because the spars will meet at an angle".
Now, having read all that, I dont see the Me 262 as having solutions to the problems generated by the swept wing . I dont profess to understand any of this, but either the solution is there, or it isnt, and i dont see a solution in the Me 262 package. so its swept wing technology, like a lot of things about the 262, whilst "sexy" and "nice to have" isnt a real game changer or advantage that i can see. ill stand corrected if one of the boffins in this place can explain differently to me why the 262's swept wing was an advantage