That is really a strawman argument: I never said he read off 300 knots on his ASI: What I wrote was : "Did he actually read off an IAS corresponding to 290 or 295 knots and rounded this off to 300?"
And Sakai saying "about 300 knots" still sounds very much of a ballpark number and not something one would tune a simulation model based on. At least not in my book.
I can't comment as to the accuracy of that quote. At one point I believed it to be overly optimistic but as I read more, I am finding that his claim is quite plausible in the context of other evidence.
bNo torque curves needed: I have an original Japanese chart for the Sakae 12 where I can read off power for different boosts from -350 to +250 mm in the 1700-2550 rpm range, and the Japanese +150 mm 2500 rpm setting generates a little less power than the US test at +35" 2550-2600 rpm, hence the slightly lower speed (330 mph) with that setting in my estimate.
US test reports seem to always quote RPM figures in the 2500 - 2550 RPM range. You are stating that the Japanese chart gives a power reading for +129 mm at 2600 RPM for a Sakae 12 engine? That would be interesting.
If the +150 mm boost setting at 2500 RPM is giving 330 MPH in a bent bird then what do you suppose +250 mm and 2550 RPM would be giving on a non-bent bird?
You seem to miss my point: I'm saying that the Japanese changed the pitch range to improve the Zero's range at the cost of performance (trading high speed and high climb rate for long range). So the fact that this seems to be the case with many of the wrecks found actually bolsters my point that the low revs mentioned in US evaluations before they changed the pitch range was due to the Japanese employing this setting on a wider scale to get range, and not due to the engine in the US Wright Field test of the A6M2 being worn out.
I believe this is a poor argument for the following reasons:
1. At the "Normal" engine setting of 2350 RPM, A6M2 cruised at 316 MPH.
2. The long range missions to Guadalcanal were flown at very slow airspeeds on lean mixtures.
Assuming the same advance ratio, half the airspeed and half the RPM is awfully low, my guess is that it is too low to be practical.
3. One other point that is worth noting is that Koga's A6M2 had no need to be configured for any super long ranges if such a configuration was even possible. He was flying off a carrier where low speed acceleration off the carrier deck was certainly more important.