1:72 Complete Iowa Battleship 16"-50 cal Turret with interior down to the magazine

Ad: This forum contains affiliate links to products on Amazon and eBay. More information in Terms and rules

Thanks… they are really, really fragile. That's one of the 3D printing conundrums. You can print stuff that's simply to small to exist. The printer doesn't care.

Short workday... PT, but did some good stuff. I added some more spacers around the perimeter of the Barbette/Lower Bulkhead junction. The interface between the two is just a bit over a 1/4" long and it's critical. I didn't have any more of the 1/4" I-beam so I substituted some 1/4" square stock. It's not visible, so it doesn't matter. It's not very secure. The only place I didn't insert it was at the splice plate where the gap was significantly narrower. The picture is looking bottom up which is why they're out of sight.

ITP-Extra-Spacers.jpg


While this was setting I actually started some finish painting, putting on a coat of Tamiya Flat White with the airbrush on everything that was going to be white. I did NOT do this on the insides of the rear gun compartments or the back bulkhead. The Tamiya Flat White Primer is pretty white and I wanted this coat to no be dissolvable by Tamiya alcohol based paints. If I overpainted them with the flat white, I would need to seal the surface with Dullcoat so the colors wouldn't bleed.

I didn't take any pictures of this painting since you can't really see any difference with the primer coat.

I needed to have a secure way to tie all this flimsy styrene sheet stock to the wooden display base so I drew something that would do the trick. Two of these brackets will tie the shells to the base. They'll be in back and not easily seen. The center pieces will be held by the center column. I have a nice supply of M4 button head screws that will be held with nuts on the inside (or outside... whichever works best).

ITP-Mounting-Clip.png


They just finished printing. I will be splitting the shells tomorrow and will be adding these brackets before painting.

If I can draw it, I can make it.
 
Thanks guys! Funny you should sight Michelangelo… my first paragraph sort of addresses that thought.

There was some seriously modeling stuff going on today. It was like cutting the Hope Diamond. One wrong cleave and all you have is worthless diamond dust. Well... maybe not quite that hyperbolic, but there was a significant probability that I could wreck over two week's work and about $25 worth of styrene, and I didn't have more stock to make another one.

Today was a BFD! A milestone day to be sure. I did get the shells split without wrecking them. I found that my hinge idea needed some revision, and I found that I can't use the large kit decking piece.

Let's start with the disection...

I scribed a horizontal line down the center of each side of the bulkhead assembly using my Starratt surface gauge. i supported the straight portion in a jig I made to support my O'gauge locomotices when repairing them. After scribing the line down the center on one side, I rotated the jig, without moving the bulkhead and scribed the opposite side. I was rewarded with two lines on opposite sides. I then highlighted the lines with a fine Sharpie using a straight edge.

ITP-Scribing-the-Cut-Line.jpg


How to separate them. I thought of using a razor saw and quickly dispelled that idea. I had to cut not just the skin, but the inner skins on the doubled portions and all the way through the annual decks. I ended up using a rather large abrasive cutoff wheel intended for cutting steel. When you abrasively try to cut styrene you essentially melt your way through it, but through it I got. The cut was ragged and not particularly straight, but it was within the margin of error and was fixable.

ITP-The-First-Cut.jpg


Where the cut occurred where there was no blocking piece right there, the styrene was spreading out. Before cutting the second side, I added new 1/8" stock to bring it right to the cut edge thereby stabiling the edge from further delamination and getting a head start on closing off the edges to simulate the solid armor plating.

ITP-Gluing-In-The-Armor-Filler.jpg


I then cut side two and was presented with two shells that DID NOT COMPLETELY DECOMPOSE. There was some spreading at the exposed corners of the annular decks.

ITP-The-Two-Raw-Halves.jpg


That aluminum clamp was used (among others) to re-secure these edges so I could glue them. I needed solvent cement; tube cement; and thin, med, thick and gel CA to finally get these springy bits to stay put. I do have fears about them holding up in the muesum envvironment and may need to do something else to ensure they stay attached.

On the open shell, the top will be visible and needed to be closed off to simulate the solid armor. I traced the shape onto some styrene and cut it out using the scribe and snap method (as will all the other pieces).

ITP-Top-Armor-Filler.jpg


The above picture also shows that the open ends are all filled with stock and sanded flush, but not filled yet. I glued the top strip with solvent cement and held in place with some strips of Tamiya narrow masking tape. This image also shows several other features. I removed the parts of the of the inner-cylinder spacers that were peeking out over the edges of the lower tapered bulkhead to ensure that the ring gear/roller track will nestle in properly. There is also copious amounts of Tamiya filler that will be sanded before painting in the next session.

ITP-Armor-Filler-Top.jpg


Both shells were now fully filled and rough sanded. Whew!

It was also time to open the last cutaway that would expose the pinion gear area. I assembled the structure with the pan deck and electric deck, rotated the shell to the proper orientation and drew the place the opening would go. I used the Dremel with a carbide router to rough out the hole. It too had to penetrate multiple layers, which I then cleaned with a sanding from on the same Dremel. In this image everything is upside down. Because the armor plate doubling will be on the top of the opening, I don't think it will be visible, but I may fill the gaps with Milliput to make it look solid too.

ITP-Cutaway-Showing-Pinion-Space.jpg


I was finally at a point where I could actually figure out how this was going to go together. I found out that I COULD NOT USE the kit's large deck molding. I was planning on using it, but again, like the rangefinder ears that I didn't draw and therefore didn't include with the width measurements, I didn't draw this part either. And it doesn't work at all. Here's why.

ITP-Trouble-with-the-Kit-Deck.jpg


That difference in apparent height, is because the fixed shell slips up inside the raised gun house mounting, but the deck walls and deck and about 1/4" lower. To connect the open shell with the fixed one, I either have to mount the fixed shell lower or cut off the excess on the open one. And both choices create a mess since the bulkhead height is determined by the collective height of the internal decks. This view shows how the deck piece overlaps the shell from below. It looks great snuggled there, but screws everything up.

ITP-Kit-Deck-Interface.jpg


So I'm not using it. I'm going to mount the lower gun house plate directly on the fixed shell and the open shell now aligns perfectly. I may make a flat deck simulation piece. I found out from Ryan Syzmanski today that the teak decking planks are 5" wide. I might want to plank a piece with real wood stained teak... just think'n.

Here are the shells with just the gun house bottom. And it works!

ITP_Fit_w-o_Kit_Deck.jpg


The last thing was to see if my hinge idea worked. It really didn't. It's not wide enough to provide a good mounting surface.

ITP-Hinge-Failure.jpg


Furhtermore, since these shells are not moving, a hinge is overkill. I'm going to permanently screw the shells down to the baseplate. BTW: the brackets came out well and I will also be mounting them before painting. I'm just going to draw and 3D print an angle bracket that will hold the shells in the correct relationship, and that will be that.

With the shells on their way to completion, all the painting will commence in full. I got a green light to use the spray booth at my wonderful local hobby shop so I can spray the solvent-based paint when the weather isn't cooperating. I've started playing with getting the right shades of gray to paint the apparatus and guns. This is the gun in the un-restored #3 turret and it looks kinda like haze gray to me. I may be able to use it for the guns. For the equipment, I'm going with a darker shade. This is pano that I took. You can see that the door frame is a darker shade than the gun's yoke. I also have to add those ladder rungs you see in the lower left. The gun captain uses them to get up the alcove and out of the way of the maddening 4 foot gun recoil.

ITP_NJ_Cntr_Gun_Comp_Pano.jpg


So... like I said. it was a heckuva day. I am very relieved to have the bulkheads done. The rest of the job, while painstaking, will be fun.
 
It's about as big as I could make it. Many of the 3D parts were literally at the edge of my printer's capacity. There are bigger resin printers out there now, but they are expensive and take up more bench space than I can spare. Moreover, it would require much larger cleaning baths, bigger ultrasonic cleaner, more solvent, etc. Just don't want to go there.

Regarding palpitations: this project's not going to get less exciting. Perhaps you can try a beta blocker. They work for my AFib :)p)

It took less than five minutes to draw a new bulkhead junction piece. It's being printed now. I will also screw this in place. I'll drill the holes when complete so I know what's behind them on the bulkheads.

ITP New Junction.png
 
As predicted, short session today, but did get some stuff done.

Here's the printed junction block. I have some clear space on the other side of the bulkheads to put the mounting screws. It's way stronger than it has to be.

Because I drew this part directly in conjunction with the bulkhead drawings, I was able to build in the curvature on the back (both legs). You place the part INTO the other shape and "Intersect Faces". What your left with is a line or lines of exactly where the two surfaces intersect and you can then shape the part to that line. The curves matched perfectly. While it's not essential in this instance since I'm relying on screws and nuts to hold it, having perfectly matched surfaces is great if you're going to glue them together. With the screws, having the surfaces matched will not introduce any stresses to straighen out the curves.

ITP New Junction Bracket.jpg


Also, here's the finished mounting bracket(s). There are two of them. Between the massive junction pieces and the mounting brackets, plus the secure mounting of the central column, the model should be pretty secure.

ITP Base Clamp.jpg



I spent some time sanding and finishing the filler that I applied yesterday. I got one shell done. I will finish the other one tomorrow and maybe, just maybe might be abe to get the primer put on tomorrow. The weather is looking pretty good being in the mid-60s and sunny.

I also took time to clean off the workspace in preparation for painting everything. It was an unholy mess. They say, "a clean desk is the sign of a sick mind." So what's the opposite when it comes to work benches?
 
Glad you're on an even keel. So here's some more stuff to get the blood flowing...

Weather cooperated this afternoon with temp at 68° F and a little breeze, so after doing some more work on the shells, I DID get to prime them.

I located and attached the base mounting brackets. Having the shells sitting flat on their bottoms, I marked the upper hole location with a Sharpie and drilled a small 1/32" pilot hole. I opened the hole with a 4mm drill. I'm using 4 X 8mm hex-button-head screws and nuts. I fastened the top screw and then drilled the bottom through the bracket's hole. I was able to accurately located the lower hole by shining my work light through the translucent styrene so I could visualize where the annular decks were.

I fastened them in place in prep for painting.

ITP_Base_Brackets_Installed.jpg


I then positioned the center junction piece and again marked one hole on one leg. Did the same drill routine and mounted the one side with one screw and then drilled the second hole. I fastened the one side, brought the other shell into position, marked its first hole and then repeated the drill.

I mounted the bracket permanently and painted the shells with the hardware in place.

ITP_Junction_Piece_Installed_2.jpg


And the interior view;

ITP_Junction_Piece_installed.jpg


Notice in the above, I added some cover pieces on the open ends of the annular decks. I didn't like how ragged they looked AND there was some epoxy filler in some that was very hard to remove. The viewers probably won't object to this. I also broke loose one of the decks when I was applying pressure on the structure during the drilling/screwing operation. I was worried about the structural integrity of these joints and my fears were well-founded.

Here's the outside of the just primed shells. I couldn't really see the piant laying on. I was wearing my chemical respirator AND safety googles besides my normal glasses, and couldn't see much of what was going on. Ergo, I got some runs. White is a tough color to spray for that reason. I smeared the paint with my nitrile-gloved finger to reduce its height and will do some post-priming finishing to restore the surface before finish coats.

ITP_Shell_Primed_Outside.jpg


And the insides,

ITP_Shell_Primed_Inside.jpg


And I even started masking the rotating decks. I got the powder flat and the first projectile flat masked to paint the deck portion. The powder flat gets a linoleum brown and the projectile flats gets burnt iron since they are bare steel. The inner portion might be linoleum or painted steel, but the rotating parts are bare steel with heavy coatings of grease so the projectiles can be easily slid to the hoists.

ITP_Masking_Powder_Flat.jpg


Have a great weekend and Happy Halloween for all those readers who live in places where this is celebrated. In Louisville, Halloween is a big deal, in many casse more so than Christmas. There's a street, Hillcrest, where the decorations are so over the top, that 1,000s of people visit there. When the houses are sold, the decorations are conveyed with the property and the new owners are honor-bound to keep it going.
 

Users who are viewing this thread

Back