Wurger,
VBF-13,
Lucky13,
Gnomey,
SANCER - thank you!
VBF-13
: It's my pleasure! I like this aircraft since I was boy. From the veterans' memoirs it seems that it was like a good soldier - you could trust it in action.
SANCER
- many thanks for my first rating
In this post I will finish the engine cowling of the Dauntless (of course, for this
stage of the project). In the previous posts I formed its outer panels. In the case of the air-cooled radial engines like the one used in the SBD, there is always another, inner panel: the central part of the cowling. It is located behind the cylinders and exhaust stacks. In the classic arrangement of the NACA cowling it is nearly invisible. In the SBD-1..-4 you could see only its outer rim. That's why I had to use all available pictures of the Dauntless engine maintenance or the wrecks, to learn about its general shape:
This panel had two variants. The first one (let's call it "flat") is visible on the photo above. It was used in the SBD-1..-4. In the SBD-5 and -6 the engine was shifted forward by 4", so the central panel became a little bit longer ("deeper").
Frankly speaking, I still need more photos and drawings to better determine the shape of this part, especially the details of its earlier, "flat" version! Let me know if you have one — I am especially interested in the upper area, around the carburetor, in the SBD-1…-4. (The few photos that I have reveal that behind the upper cylinders of the R-1820 engine there was a vertical air duct from the air scoop to the carburetor. I still need to determine its shape, as well as the shape of the inner cowling around it).
That's why I decided to determine the exact shape of this hidden panel later, when I fit the engine and its mounts. (I count on the indirect information coming from the geometry of the engine mount and the exhaust stack shape). At this moment I am leaving this area "as it is", because too much of its geometry is based on my assumptions.
However, I can precisely shape the recesses around the gun barrels, because they are better visible on the photos. I have to make these details easily adaptable when I have to alter the shape of this panel. (I expect that in the future I will tweak the area around the carburetor multiple times, before it "stabilizes" in the most probable state).
The cross-section of these gun recesses have the same shape as their troughs in the NACA cowling. Thus I started by copying the control polygon of this "U"-like cross-section shape (five control vertices) and extruding it into an auxiliary "trough" (see figure "a", below):
I examined the interesection edge of this auxiliary object with the central panel. The goal was to place its vertices as close as possible to the existing mesh edges. I could easily check it in the front view, because the "trough" in this projection is reduced to a single contour (figure "b", above). While the both of its side vertices are very close to one of the elliptical edge loops, the middle vertex was too far from the nearest radial edge loop. I had to adjust the mesh of the central panel by rotating a little all of its upper radial edges.
After these preparations, I generated in the panel mesh the intersection edge with the auxiliary "trough" (I used my
Interesct add-on for this purpose):
I removed the three vertices that were inside the contour of this intersection. It also deleted all the mesh faces around these points. Then I created new faces in this place, merging the intersection contour with the rest of the mesh of this panel (as in the figure above).
Figure below shows how I created the inner surface of this gun trough:
I started by creating a new face that "bridged" the opposite edges of the opening. Then I split it twice, obtaining three inner edges. I placed these edges directly behind the corresponding vertices of the opening contour. Then I closed this opening, creating the four remaining faces. (
Now I can see that I could do the same in a simpler way, by extruding the bottom part of the opening contour. Never mind, both methods lead to the same result). At this moment the edges of this recess are too smooth. To reduce the radius of this rounding, and make it similar to a regular fillet, I assigned these edges the full
Bevel Weight (=1.0). Then I added to this object a multi-segment
Bevel modifier (before the smoothing
Subdivision Surface modifier). The last picture from figure above shows the faces generated by this
Bevel, before they were smoothed.
Finally I compared the shape of the resulting gun trough to the corresponding troughs in the upper cowling panel:
(I made it transparent, to better see the eventual differences in their shapes). Indeed, there were some deviations. I quickly fixed them, adjusting in the front view the whole edges of this recess. (In this view these edges are reduced to a single point).
Now I have to trim ends of the troughs in the NACA cowling, creating the space for the central cowling panel. I could do it by modifying their mesh. However, because the shape of this panel may be altered in the future, I decided to use another
Boolean modifier for this purpose. I just created an appropriate auxiliary object, and applied it to the gun trough panel:
This was the last element of the NACA cowling. Figure "a", below, shows the recesses in the central panel that I formed in this post, while figure "b" shows details of the whole assembly:
As you have probably noticed in the course of the few previous posts, I had often to move the location of the NACA cowling, switching between the SBD-5 and the SBD-3 versions. To avoid such endless movements in the future, I decided to split the Bledner file of this project into several separate scenes for each Dauntless version that I need. For the beginning I created two additional scenes, for the SBD-1 and SBD-5. They are named after the Dauntless version they contain, thus I renamed the current scene to "SBD-3".
Figure below shows the SBD-5 scene (and the scene selection menu):
When I created the scene for this Dauntless variant, I chose the option that created it as a copy of the original scene. Initially both scenes share the same objects (the same fuselage object or the wing objects are "linked" to SBD-3 and SBD-5 scenes). In the effect, I can edit these shared objects in any of these scenes. Every change I apply to their meshes, modifier stacks, or general positions/scales/rotations is visible everywhere.
Because the NACA cowling in the SBD-5 was shifted forward by 4", I had to make in its scene local copies of the panel objects. However, they still share with the SBD-3 their meshes. In the effect, they became "clones" of their counterparts from the SBD-3 scene. Clones share the common meshes, thus they have the same basic shape, but they can have different general transformation (location/rotation/scale). Thanks to this, in the SBD-5 scene the bottom panels of the NACA cowling have the same shape as in the SBD-3, but their location is different. What's more, the clones can have different modifier stacks. Thus in this SBD-5 model I was able to remove the carburetor scoop openings from the upper NACA panel, and modify the cutouts for the different cowling flaps (see figure above) because they were generated dynamically, by a
Boolean modifier.
Ultimately — there are a few objects specific for the SBD-5, which exist only in this scene: the central cowling panel and the panels around the gun troughs. I copied their meshes from the SBD-3 and then modified them according the SBD-5 reference drawings. In the SBD-5 the central cowling panel, placed behind the engine cylinders, was longer by 3.5" than in the previous versions. I had to scale and reshape this mesh. Fortunately, its gun recesses (formed at beginning of this post) are easily adjustable, thanks to their simple topology.
In similar way I created a separate scene for the SBD-1:
At this moment the only difference between the SBD-1 and SBD-3 is the carburetor scoop on the top of the NACA cowling. However, there will be another minor differences in the next row of cowling panels.
In the future I will also create the SBD-2 scene (combining the NACA cowling from the SBD-3 and further cowling panels from the SBD-1), and the SBD-4 scene (basically – it is the SBD-3 with the SBD-5 Hamilton Standard Hydromatic propeller). As you can see, the SBD-2 and SBD-4 will be just combinations of various parts from the "key" versions (SBD-1, SBD-3, SBD-5), thus I will create them at the end of this build.
In this
source *.blend file you can evaluate yourself these SBD-1, SBD-3 and SBD-5 scenes and their initial contents. In the next posts I will continue my work on the SBD-3, then update the SBD-1 and SBD-5.